extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C22.D4)⋊1C2 = C22⋊C4⋊D6 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | 4 | (C3xC2^2.D4):1C2 | 192,612 |
(C3×C22.D4)⋊2C2 = C6.792- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):2C2 | 192,1207 |
(C3×C22.D4)⋊3C2 = C4⋊C4.197D6 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):3C2 | 192,1208 |
(C3×C22.D4)⋊4C2 = S3×C22.D4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):4C2 | 192,1211 |
(C3×C22.D4)⋊5C2 = C6.1202+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):5C2 | 192,1212 |
(C3×C22.D4)⋊6C2 = C6.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):6C2 | 192,1213 |
(C3×C22.D4)⋊7C2 = C6.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):7C2 | 192,1214 |
(C3×C22.D4)⋊8C2 = C4⋊C4⋊28D6 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):8C2 | 192,1215 |
(C3×C22.D4)⋊9C2 = C6.612+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):9C2 | 192,1216 |
(C3×C22.D4)⋊10C2 = C6.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):10C2 | 192,1217 |
(C3×C22.D4)⋊11C2 = C6.622+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):11C2 | 192,1218 |
(C3×C22.D4)⋊12C2 = C6.632+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):12C2 | 192,1219 |
(C3×C22.D4)⋊13C2 = C6.642+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):13C2 | 192,1220 |
(C3×C22.D4)⋊14C2 = C6.652+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):14C2 | 192,1221 |
(C3×C22.D4)⋊15C2 = C6.662+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):15C2 | 192,1222 |
(C3×C22.D4)⋊16C2 = C6.672+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):16C2 | 192,1223 |
(C3×C22.D4)⋊17C2 = C6.852- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):17C2 | 192,1224 |
(C3×C22.D4)⋊18C2 = C6.682+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):18C2 | 192,1225 |
(C3×C22.D4)⋊19C2 = C6.692+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):19C2 | 192,1226 |
(C3×C22.D4)⋊20C2 = C3×C23.7D4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | 4 | (C3xC2^2.D4):20C2 | 192,891 |
(C3×C22.D4)⋊21C2 = C3×C23⋊3D4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):21C2 | 192,1423 |
(C3×C22.D4)⋊22C2 = C3×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):22C2 | 192,1425 |
(C3×C22.D4)⋊23C2 = C3×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):23C2 | 192,1427 |
(C3×C22.D4)⋊24C2 = C3×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):24C2 | 192,1428 |
(C3×C22.D4)⋊25C2 = C3×C22.34C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):25C2 | 192,1429 |
(C3×C22.D4)⋊26C2 = C3×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):26C2 | 192,1431 |
(C3×C22.D4)⋊27C2 = C3×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):27C2 | 192,1435 |
(C3×C22.D4)⋊28C2 = C3×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):28C2 | 192,1436 |
(C3×C22.D4)⋊29C2 = C3×C22.45C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):29C2 | 192,1440 |
(C3×C22.D4)⋊30C2 = C3×C22.47C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):30C2 | 192,1442 |
(C3×C22.D4)⋊31C2 = C3×C22.53C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):31C2 | 192,1448 |
(C3×C22.D4)⋊32C2 = C3×C22.54C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 48 | | (C3xC2^2.D4):32C2 | 192,1449 |
(C3×C22.D4)⋊33C2 = C3×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C3×C22.D4 | 96 | | (C3xC2^2.D4):33C2 | 192,1451 |
(C3×C22.D4)⋊34C2 = C3×C22.19C24 | φ: trivial image | 48 | | (C3xC2^2.D4):34C2 | 192,1414 |
(C3×C22.D4)⋊35C2 = C3×C23.36C23 | φ: trivial image | 96 | | (C3xC2^2.D4):35C2 | 192,1418 |